Late Pennsylvanian carbonate platform facies and coral reef: new insights from southern China (Guizhou Province)

Author:

Maillet MarineORCID,Huang Wen-Tao,Li Xiao,Yang Zhen-Yuan,Guan Chang-Qing,Zhang Yong-Li,Gong En-Pu,Ueno Katsumi,Samankassou Elias

Abstract

AbstractThe Pennsylvanian is characterized by intense paleoenvironmental changes related to glacio-eustatic sea-level fluctuations and major tectonic events, which affected the evolution of biocommunities. Most known Pennsylvanian tropical reefs and mounds are predominantly composed of calcareous algae (e.g. phylloid algae, Archaeolithophyllum), calcareous sponges, fenestrate bryozoans, Tubiphytes, and microbialites. However, in Houchang (southern China), the Late Pennsylvanian carbonate platform records a large coral reef lacking any analogs in age (Gzhelian), size (80–100 m thick) and composition (high biodiversity). The large coral reef developed at the border of the Luodian intraplatform basin. The intraplatform basin is characterized by the deposition of green algal grainstone, coated grain grainstone and bioclastic packstone, grainstone, floatstone and rudstone in shallow-waters. In the deep-water shelf, lithofacies are composed of burrowed bioclastic wackestone, microbioclastic peloidal packstone, grainstone, and fine-grained burrowed wackestone and packstone. In this context, the coral reef developed on a deep-shelf margin, in a moderate to low energy depositional environment, below the FWWB. The scarcity of Pennsylvanian coral reefs suggests global unfavorable conditions, which can be attributed to a complex pattern of several environmental factors, including seawater chemistry (aragonite seas), paleoclimatic cooling related to continental glaciation, and the biological competition with the more opportunistic and adaptive phylloid algal community that occupied similar platform margin paleoenvironments. The existence of the large Bianping coral reef in southern China, as well as a few additional examples of Pennsylvanian coralliferous bioconstructions, provides evidence that coral communities were able to endure the Late Paleozoic fluctuating paleoenvironmental conditions in specific settings. One of such settings appears to have been the deep shelf margin, where low light levels decreased competition with the phylloid algal community.

Funder

Swiss National Science Foundation

National Natural Science Foundation of China

University of Geneva

Publisher

Springer Science and Business Media LLC

Subject

Paleontology,Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3