Short-term middle Eocene (Bartonian) paleoenvironmental changes in the sedimentary succession of Olivetta San Michele (NW Italy): the response of shallow-water biota to climate in NW Tethys

Author:

Arena Luca,Giraldo-Gómez Victor M.ORCID,Baucon Andrea,Piazza Michele,Papazzoni Cesare A.,Pignatti Johannes,Gandolfi Antonella,Briguglio Antonino

Abstract

AbstractThis study focuses on the paleontological content of the middle Eocene (Bartonian) carbonate–siliciclastic sediments of the Capo Mortola Calcarenite Formation from Olivetta San Michele (Liguria, Italy). Along the succession, there are significant paleoecological changes triggered by the variation in neritic input as a consequence of tectonic and climatic instability. Among microfossils, nummulitids prevail, followed by orthophragmines, smaller benthic, and planktonic foraminifera, whereas mollusks and ichnofossils are the most abundant macrofossils. The sudden changes in the benthic communities due to the progressive increase in fluvial input are recorded throughout the sedimentary succession. An increase in water turbidity caused stressful conditions for autotrophic taxa, reducing their size and abundance. In contrast, filter feeders became dominant, suggesting an increase in dissolved and suspended nutrients. Ichnological analysis shows environmental fluctuations controlled by the transport of neritic material offshore, thus confirming the general deepening trend of the studied succession. In the upper part of the succession, we recorded an alternation between gravity flows and marly sediments that are interpreted as short-term alternations between low and intense precipitations. The gravity flows yield taxa such as larger benthic foraminifera (LBF), smaller benthic and planktonic foraminifera, mollusks, and corals. In turn, marls display only a few LBF and abundant smaller benthic and planktonic foraminifera. In these intervals, the increase in planktonic foraminifera also suggests a deepening of the carbonate ramp coinciding with a reduction of light that did not favor the development of LBF. These changes are probably related to the climatic dynamics that occurred in the Bartonian in the western Tethys.

Funder

Università degli Studi di Genova

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3