The Fan Theorem, its strong negation, and the determinacy of games

Author:

Veldman Wim

Abstract

AbstractIn the context of a weak formal theory called Basic Intuitionistic Mathematics $$\textsf{BIM}$$ BIM , we study Brouwer’s Fan Theorem and a strong negation of the Fan Theorem, Kleene’s Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene’s Alternative is equivalent to strong negations of these statements. We discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy Theorem. This theorem says that every subset of Cantor space $$2^\omega $$ 2 ω is, in our constructively meaningful sense, determinate. Kleene’s Alternative is equivalent to a strong negation of a special case of this theorem. We also consider a uniform intermediate value theorem and a compactness theorem for classical propositional logic. The Fan Theorem is equivalent to each of these theorems and Kleene’s Alternative is equivalent to strong negations of them. We end with a note on ‘stronger’ Fan Theorems. The paper is a sequel to Veldman (Arch Math Logic 53:621–693, 2014).

Publisher

Springer Science and Business Media LLC

Reference49 articles.

1. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy of the law of excluded middle and related principles. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 192–201 (2004)

2. Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive analysis. Math. Logic Quart. 51, 360–364 (2005)

3. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Note Series, no. 97, Cambridge University Press, Cambridge (1987)

4. Brouwer, L.E.J.: Begründung der Mengenlehre unabhängig vom logischen Satz vom Ausgeschlossenem Dritten. Erster Teil: Allgemeine Mengenlehre. KNAW Verhandelingen $$1^e$$ Sectie 12 no. 5, 43 p., also: [7, pp. 150–190]

5. Brouwer, L.E.J.: Über Definitionsbereiche von Funktionen, Math. Annalen 97, 60–75, (1927). also: [7, pp. 390–405]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3