Abstract
AbstractIn the context of a weak formal theory called Basic Intuitionistic Mathematics $$\textsf{BIM}$$
BIM
, we study Brouwer’s Fan Theorem and a strong negation of the Fan Theorem, Kleene’s Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene’s Alternative is equivalent to strong negations of these statements. We discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove that the Fan Theorem is equivalent to the Intuitionistic Determinacy Theorem. This theorem says that every subset of Cantor space $$2^\omega $$
2
ω
is, in our constructively meaningful sense, determinate. Kleene’s Alternative is equivalent to a strong negation of a special case of this theorem. We also consider a uniform intermediate value theorem and a compactness theorem for classical propositional logic. The Fan Theorem is equivalent to each of these theorems and Kleene’s Alternative is equivalent to strong negations of them. We end with a note on ‘stronger’ Fan Theorems. The paper is a sequel to Veldman (Arch Math Logic 53:621–693, 2014).
Publisher
Springer Science and Business Media LLC
Reference49 articles.
1. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy of the law of excluded middle and related principles. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pp. 192–201 (2004)
2. Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive analysis. Math. Logic Quart. 51, 360–364 (2005)
3. Bridges, D., Richman, F.: Varieties of Constructive Mathematics. London Mathematical Society Lecture Note Series, no. 97, Cambridge University Press, Cambridge (1987)
4. Brouwer, L.E.J.: Begründung der Mengenlehre unabhängig vom logischen Satz vom Ausgeschlossenem Dritten. Erster Teil: Allgemeine Mengenlehre. KNAW Verhandelingen $$1^e$$ Sectie 12 no. 5, 43 p., also: [7, pp. 150–190]
5. Brouwer, L.E.J.: Über Definitionsbereiche von Funktionen, Math. Annalen 97, 60–75, (1927). also: [7, pp. 390–405]