Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Aigner, M.: Combinatorial theory. Reprint of the 1979 original. Classics in Mathematics, viii+483 pp. Springer, Berlin (1997)
2. Dimitrov, R.D.: Computably Enumerable Vector Spaces, Dependence Relations, and Turing Degrees. Ph.D. Dissertation, The George Washington University (2002)
3. Dimitrov R.D.: Quasimaximality and principal filters isomorphism between $${\mathcal{E}^{\ast }}$$ and $${\mathcal{L}^{\ast }(V_{\infty})}$$ . Math. Log. 43, 415–424 (2004)
4. Downey, R. G.: Undecidability of $${\mathcal{L}(F_{\infty})}$$ and other lattices of r.e. substructures. Ann. Pure Appl. Log. 32(1), 17–26 (1986); corr. ibid. 48, 299–301 (1990)
5. Downey, R.G., Remmel, J.B.: Computable algebras and closure systems: coding properties. Handbook of Recursive Mathematics, vol. 2, pp. 977–1039, Stud. Logic Found. Math., vol. 139. North-Holland, Amsterdam (1998)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Countable Nonstandard Models: Following Skolem’s Approach;Handbook of the History and Philosophy of Mathematical Practice;2024
2. ON COHESIVE POWERS OF LINEAR ORDERS;The Journal of Symbolic Logic;2023-03-13
3. Countable Nonstandard Models: Following Skolem’s Approach;Handbook of the History and Philosophy of Mathematical Practice;2021
4. Cohesive Powers of Linear Orders;Computing with Foresight and Industry;2019
5. The Lattice of Computably Enumerable Vector Spaces;Computability and Complexity;2016-12-01