Abstract
AbstractIn Cieśliński (J Philos Logic 39:325–337, 2010), Cieśliński asked whether compositional truth theory with the additional axiom that all propositional tautologies are true is conservative over Peano Arithmetic. We provide a partial answer to this question, showing that if we additionally assume that truth predicate agrees with arithmetical truth on quantifier-free sentences, the resulting theory is as strong as $$\Delta _0$$
Δ
0
-induction for the compositional truth predicate, hence non-conservative. On the other hand, it can be shown with a routine argument that the principle of quantifier-free correctness is itself conservative.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献