Destructibility and axiomatizability of Kaufmann models

Author:

Switzer Corey BacalORCID

Abstract

AbstractA Kaufmann model is an $$\omega _1$$ ω 1 -like, recursively saturated, rather classless model of $${{\mathsf {P}}}{{\mathsf {A}}}$$ P A (or $${{\mathsf {Z}}}{{\mathsf {F}}} $$ Z F ). Such models were constructed by Kaufmann under the combinatorial principle $$\diamondsuit _{\omega _1}$$ ω 1 and Shelah showed they exist in $$\mathsf {ZFC}$$ ZFC by an absoluteness argument. Kaufmann models are an important witness to the incompactness of $$\omega _1$$ ω 1 similar to Aronszajn trees. In this paper we look at some set theoretic issues related to this motivated by the seemingly naïve question of whether such a model can be “killed” by forcing without collapsing $$\omega _1$$ ω 1 . We show that the answer to this question is independent of $$\mathsf {ZFC}$$ ZFC and closely related to similar questions about Aronszajn trees. As an application of these methods we also show that it is independent of $$\mathsf {ZFC}$$ ZFC whether or not Kaufmann models can be axiomatized in the logic $$L_{\omega _1, \omega } (Q)$$ L ω 1 , ω ( Q ) where Q is the quantifier “there exists uncountably many”.

Funder

Austrian Science Fund

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Logic,Philosophy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3