Abstract
AbstractFor $$n\in \omega $$
n
∈
ω
, the weak choice principle $$\textrm{RC}_n$$
RC
n
is defined as follows:
For every infinite setXthere is an infinite subset$$Y\subseteq X$$
Y
⊆
X
with a choice function on$$[Y]^n:=\{z\subseteq Y:|z|=n\}$$
[
Y
]
n
:
=
{
z
⊆
Y
:
|
z
|
=
n
}
.
The choice principle $$\textrm{C}_n^-$$
C
n
-
states the following:
For every infinite family ofn-element sets, there is an infinite subfamily$${\mathcal {G}}\subseteq {\mathcal {F}}$$
G
⊆
F
with a choice function.
The choice principles $$\textrm{LOC}_n^-$$
LOC
n
-
and $$\textrm{WOC}_n^-$$
WOC
n
-
are the same as $$\textrm{C}_n^-$$
C
n
-
, but we assume that the family $${\mathcal {F}}$$
F
is linearly orderable (for $$\textrm{LOC}_n^-$$
LOC
n
-
) or well-orderable (for $$\textrm{WOC}_n^-$$
WOC
n
-
). In the first part of this paper, for $$m,n\in \omega $$
m
,
n
∈
ω
we will give a full characterization of when the implication $$\textrm{RC}_m\Rightarrow \textrm{WOC}_n^-$$
RC
m
⇒
WOC
n
-
holds in $${\textsf {ZF}}$$
ZF
. We will prove the independence results by using suitable Fraenkel-Mostowski permutation models. In the second part, we will show some generalizations. In particular, we will show that $$\textrm{RC}_5\Rightarrow \textrm{LOC}_5^-$$
RC
5
⇒
LOC
5
-
and that $$\textrm{RC}_6\Rightarrow \textrm{C}_3^-$$
RC
6
⇒
C
3
-
, answering two open questions from Halbeisen and Tachtsis (Arch Math Logik 59(5):583–606, 2020). Furthermore, we will show that $$\textrm{RC}_6\Rightarrow \textrm{C}_9^-$$
RC
6
⇒
C
9
-
and that $$\textrm{RC}_7\Rightarrow \textrm{LOC}_7^-$$
RC
7
⇒
LOC
7
-
.
Funder
Swiss Federal Institute of Technology Zurich
Publisher
Springer Science and Business Media LLC
Reference8 articles.
1. De La Cruz, O., Di Prisco, C.A.: Weak choice principles. Proc. Am. Math. Soc. 126(3), 867–876 (1998)
2. Halbeisen, L., Hungerbühler, N., Lazarovich, N., Lederle, W., Lischka, M., Schumacher, S.: Forms of choice in ring theory. Results Math. 74(1), Article:14 (2019)
3. Halbeisen, L., Plati, R., Schumacher, S.: A new weak choice principle. arXiv:2101.07840
4. Halbeisen, L., Tachtsis, E.: On Ramsey Choice and partial choice for infinite families of $$n$$-element sets. Arch. Math. Logik 59(5), 583–606 (2020)
5. Halbeisen, L.J.: Combinatorial Set Theory—With a Gentle Introduction to Forcing. Springer, London (2012)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献