On some $$\Sigma ^{B}_{0}$$-formulae generalizing counting principles over $$V^{0}$$

Author:

Ken Eitetsu

Abstract

AbstractWe formalize various counting principles and compare their strengths over $$V^{0}$$ V 0 . In particular, we conjecture the following mutual independence between: a uniform version of modular counting principles and the pigeonhole principle for injections, a version of the oddtown theorem and modular counting principles of modulus p, where p is any natural number which is not a power of 2, and a version of Fisher’s inequality and modular counting principles. Then, we give sufficient conditions to prove them. We give a variation of the notion of PHP-tree and k-evaluation to show that any Frege proof of the pigeonhole principle for injections admitting the uniform counting principle as an axiom scheme cannot have o(n)-evaluations. As for the remaining two, we utilize well-known notions of p-tree and k-evaluation and reduce the problems to the existence of certain families of polynomials witnessing violations of the corresponding combinatorial principles with low-degree Nullstellensatz proofs from the violation of the modular counting principle in concern.

Funder

The University of Tokyo

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3