How Accurate are GPT-3’s Hypotheses About Social Science Phenomena?

Author:

Rosenbusch HannesORCID,Stevenson Claire E.ORCID,van der Maas Han L. J.ORCID

Abstract

Abstract We test whether GPT-3 can accurately predict simple study outcomes in the social sciences. Ground truth outcomes were obtained by surveying 600 adult US citizens about their political attitudes. GPT-3 was prompted to predict the direction of the empirical inter-attitude correlations. Machine-generated hypotheses were accurate in 78% (zero-shot), 94% (five-shot and chained prompting), and 97% (extensive finetuning) of cases. Positive and negative correlations were balanced in the ground truth data. These results encourage the development of hypothesis engines for more challenging contexts. Moreover, they highlight the importance of addressing the numerous ethical and philosophical challenges that arise with hypothesis automation. While future hypothesis engines could potentially compete with human researchers in terms of empirical accuracy, they have inherent drawbacks that preclude full automations for the foreseeable future.

Publisher

Springer Science and Business Media LLC

Reference76 articles.

1. Aher, G., Arriaga, R. I., & Kalai, A. T. (2022). Using large language models to simulate multiple humans. arXiv preprint. arXiv:2208.10264

2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

3. Akhbardeh, F., Arkhangorodsky, A., Biesialska, M., Bojar, O., Chatterjee, R., Chaudhary, V., & Zampieri, M. (2021). Findings of the 2021 conference on machine translation (WMT21). In Proceedings of the Sixth Conference on Machine Translation (pp. 1–88).

4. Albarracín, D., Johnson, B. T., & Zanna, M. P. (2014). The handbook of attitudes. Psychology Press.

5. Albarracín, D., & Shavitt, S. (2018). Attitudes and attitude change. Annual Review of Psychology, 69, 299–327.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3