Author:
Woukeng Donald,Sadowski Damian,Leśkiewicz Jakub,Lipiński Michał,Kapela Tomasz
Abstract
AbstractMotivated by the theoretical results of Mrozek et al. (Commun Nonlinear Sci Numer Simul 108:106–226, 2022) we present an algorithmic construction of a transversal cellular decomposition for a planar ODE. We then use the associated combinatorial multivector field to algorithmically detect the existence of an isolated invariant set with the Conley index of a periodic orbit and admitting a combinatorial Poincaré section. This construction combined with the theoretical results of Mrozek et al. (2022) leads to a method for automatized computer assisted proofs of the existence of periodic solutions in ODE’s.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology
Reference27 articles.
1. Alexandrov, P.: Diskrete Räume. Rec Math Moscou, n Ser 2, 501–519 (1937)
2. Arioli, G., Zgliczyński, P.: Symbolic dynamics for the Hénon–Heiles Hamiltonian on the critical energy level. J. Differ. Equ. 171, 173–202 (2001)
3. Arnold, V.I.: Ordinary Differential Equations. Springer, New York (1992)
4. Bilonenko, V., Thompson, B., Agafonkin, V.: Delaunator—software for delaunay triangulation. https://github.com/delfrrr/delaunator-cpp (2018)
5. Boczko, E., Kalies, W.D., Mischaikow, K.: Polygonal approximation of flows. Topol. Appl. 154, 2501–2520 (2007)