Bigraded Betti numbers and generalized persistence diagrams

Author:

Kim WoojinORCID,Moore Samantha

Abstract

AbstractCommutative diagrams of vector spaces and linear maps over $$\mathbb {Z}^2$$ Z 2 are objects of interest in topological data analysis (TDA) where this type of diagrams are called 2-parameter persistence modules. Given that quiver representation theory tells us that such diagrams are of wild type, studying informative invariants of a 2-parameter persistence module M is of central importance in TDA. One of such invariants is the generalized rank invariant, recently introduced by Kim and Mémoli. Via the Möbius inversion of the generalized rank invariant of M, we obtain a collection of connected subsets $$I\subset \mathbb {Z}^2$$ I Z 2 with signed multiplicities. This collection generalizes the well known notion of persistence barcode of a persistence module over $$\mathbb {R}$$ R from TDA. In this paper we show that the bigraded Betti numbers of M, a classical algebraic invariant of M, are obtained by counting the corner points of these subsets Is. Along the way, we verify that an invariant of 2-parameter persistence modules called the interval decomposable approximation (introduced by Asashiba et al.) also encodes the bigraded Betti numbers in a similar fashion. We also show that the aforementioned results are optimal in the sense that they cannot be extended to d-parameter persistence modules for $$d \ge 3$$ d 3 .

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3