Author:
Ethier Marc,Frosini Patrizio,Quercioli Nicola,Tombari Francesca
Abstract
AbstractIn this paper we exploit the concept of extended Pareto grid to study the geometric properties of the matching distance for $$\mathbb {R}^2$$
R
2
-valued regular functions defined on a closed Riemannian manifold. In particular, we prove that in this case the matching distance is realised either at special values or at values corresponding to vertical, horizontal or slope 1 lines.
Funder
INdAM-GNSAGA
Wallenberg AI, Autonomous System and Software Program
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Geometry and Topology
Reference12 articles.
1. Bapat, A., Brooks, R., Hacker, C., Landi, C., Mahler, B.I., Stephenson, E.R.: Computing the matching distance of 2-parameter persistence. arXiv:2210.12868 (2022)
2. Biasotti, S., Cerri, A., Frosini, P., Giorgi, D.: A new algorithm for computing the 2-dimensional matching distance between size functions. Pattern Recognit. Lett. 32(14), 1735–1746 (2011). https://doi.org/10.1016/j.patrec.2011.07.014
3. Bjerkevik, H., Kerber, M.: Asymptotic improvements on the exact matching distance for 2-parameter persistence. arXiv:2111.10303 (2021)
4. Cerri, A., Frosini, P.: A new approximation algorithm for the matching distance in multidimensional persistence. J. Comput. Math. 38(2), 291–309 (2020). https://doi.org/10.4208/jcm.1809-m2018-0043
5. Cerri, A., Di Fabio, B., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013). https://doi.org/10.1002/mma.2704