Abstract
AbstractWe give a proof of the Lieb–Thirring inequality on the kinetic energy of orthonormal functions by using a microlocal technique, in which the uncertainty and exclusion principles are combined through the use of the Besicovitch covering lemma.
Funder
Ludwig-Maximilians-Universität München
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Adams, R.A.: Sobolev Spaces. Academic Press, Boston (1975)
2. Benguria, R.: The Von Weizsäcker and Exchange Corrections in the Thomas–Fermi Theory. PhD. Thesis, Princeton University (1979)
3. Benguria, R., Brezis, H., Lieb, E.H.: The Thomas–Fermi–von Weizsäcker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)
4. Besicovitch, A.S.: A general form of the covering principle and relative differentiation of additive functions. Proc. Cambridge Philos Soc. 41, 103–110 (1945)
5. Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A Lieb–Thirring inequality for extended anyons;Letters in Mathematical Physics;2023-01-02