Author:
Charpentier Philippe,Dupain Y.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Alexandre, W.: Zero sets of H
p functions in convex domains of finite type. Math. Z. 287(1-2), 85–115 (2017)
2. Andersson, M., Carlsson, H.: On varopoulos’ theorem about zero sets of H
p-functions. Bull. Sci. Math. 114(4), 463–484 (1990)
3. Bruna, J., Charpentier, P., Dupain, Y.: Zeros varieties for the Nevanlinna class in convex domains of finite type in C
n. Ann. Math. (2) 147(2), 391–415 (1998)
4. Bruna, J., Grellier, S.: Zero sets of H
p functions in convex domains of strict finite type in C
n. Complex Var. Theory Appl. 38, 243–261 (1999)
5. Chang, D.C., Nagel, A., Stein, E.M.: Estimates for the
∂
̄
$\bar {\partial }$
-Neumann problem for pseudoconvex domains of finite type in C
2. Acta Math. 169(3–4), 153–228 (1992)