Strong Cliques in Claw-Free Graphs

Author:

Dębski Michał,Śleszyńska-Nowak MałgorzataORCID

Abstract

AbstractFor a graph G, $$L(G)^2$$ L ( G ) 2 is the square of the line graph of G – that is, vertices of $$L(G)^2$$ L ( G ) 2 are edges of G and two edges $$e,f\in E(G)$$ e , f E ( G ) are adjacent in $$L(G)^2$$ L ( G ) 2 if at least one vertex of e is adjacent to a vertex of f and $$e\ne f$$ e f . The strong chromatic index of G, denoted by $$s'(G)$$ s ( G ) , is the chromatic number of $$L(G)^2$$ L ( G ) 2 . A strong clique in G is a clique in $$L(G)^2$$ L ( G ) 2 . Finding a bound for the maximum size of a strong clique in a graph with given maximum degree is a problem connected to a famous conjecture of Erdős and Nešetřil concerning strong chromatic index of graphs. In this note we prove that a size of a strong clique in a claw-free graph with maximum degree $$\varDelta $$ Δ is at most $$\varDelta ^2 + \frac{1}{2}\varDelta $$ Δ 2 + 1 2 Δ . This result improves the only known result $$1.125\varDelta ^2+\varDelta $$ 1.125 Δ 2 + Δ , which is a bound for the strong chromatic index of claw-free graphs.

Funder

narodowe centrum nauki

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

Reference28 articles.

1. Andersen, L.D.: The strong chromatic index of a cubic graph is at most 10. Discrete Math. 108, 231–252 (1992)

2. Bang-Jensen, J., Reed, B., Schacht, M., Šámal, R., Toft, B., Wagner, U.: On six problems posed by Jarik Nešetřil. In: Klazar, M., Kratochvíl, J., Matoušek, J., Thomas, R., Valtr, P. (eds.) Topics in Discrete Mathematics, 615–617. Springer, Berlin (2006)

3. van Batenburg, W.C.: Cliques, colours and clusters, PhD thesis, Radboud University, Nijmegen, The Netherlands (2018)

4. Barrett, C.L., Kumar, V.S.A., Marathe, M.V., Thite, S., Istrate, G., Thulasidasan, S.: Strong edge coloring for channel assignment in wireless radio networks, pervasive computing and communications workshops. In: IEEE International Conference on, PERCOMW’06, pp. 106–110 (2006)

5. Bonamy, M., Perrett, T., Postle, L.: Colouring graphs with sparse neighbourhoods: Bounds and applications (2021). arXiv:1810.06704

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3