Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference12 articles.
1. Beutelspacher, A., Brestovansky, W.: Generalized Schur Numbers. Lecture Notes in Mathematics, vol. 969, pp. 30–38. Springer, Berlin, Heidelberg (1982)
2. Guo, S., Sun, Z.-W.: Determination of the two-color Rado number for $$a_1x_1+\cdots +a_mx_m=x_0$$. J. Combin. Theory Ser. A 115, 345–353 (2008)
3. Gupta, S., Thulasi Rangan, J., Tripathi, A.: The two-colour Rado number for the equation $$ax+by=(a+b)z$$. Ann. Comb. 19, 269–291 (2015)
4. Harborth, H., Maasberg, S.: Rado numbers for $$a(x+y)=bz$$. J. Combin. Theory Ser. A 80, 356–363 (1997)
5. Harborth, H., Maasberg, S.: All two-color Rado numbers for $$a(x+y)=bz$$. Discrete Math. 197/198, 397–407 (1999)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On Disjunctive Rado Numbers for Some Sets of Equations;The Electronic Journal of Combinatorics;2024-03-22