Author:
Abiad Aida,De Boeck Maarten,Zeijlemaker Sjanne
Abstract
AbstractA Neumaier graph is a non-complete edge-regular graph containing a regular clique. In this work, we prove several results on the existence of small strictly Neumaier graphs. In particular, we present a theoretical proof of the uniqueness of the smallest strictly Neumaier graph with parameters (16, 9, 4; 2, 4), we establish the existence of a strictly Neumaier graph with parameters (25, 12, 5; 2, 5), and we disprove the existence of strictly Neumaier graphs with parameters (25, 16, 9; 3, 5), (28, 18, 11; 4, 7), (33, 24, 17; 6, 9), (35, 2212; 3, 5), (40, 30, 22; 7, 10) and (55, 34, 18; 3, 5). Our proofs use combinatorial techniques and a novel application of integer programming methods.
Funder
NWO
Croatian Science Foundation
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Abiad, A., Castryck, W., De Boeck, M., Koolen, J.H., Zeijlemaker, S.: An infinite class of Neumaier graphs and non-existence results. J. Comb. Theory Ser. A 193, 105684 (2023). https://doi.org/10.1016/j.jcta.2022.105684
2. Abiad, A., DeBruyn, B., D’haeseleer, J., Koolen, J.H.: Neumaier graphs with few eigenvalues. Des. Codes Cryptogr. 90, 2003–2019 (2022)
3. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics;AE Brouwer,1989
4. Colbourn, C.J., Colbourn, M.J., Harms, J.J., Rosa, A.: A complete census of (10, 3, 2) block designs and of Mendelsohn triple systems of order ten, III: (10, 3, 2) block designs without repeated blocks. Congr. Numer. 37, 211–234 (1983)
5. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs. CRC Press, Boca Raton (2007)