Crossing and intersecting families of geometric graphs on point sets

Author:

Álvarez-Rebollar J. L.ORCID,Cravioto-Lagos J.,Marín N.ORCID,Solé-Pi O.ORCID,Urrutia J.ORCID

Abstract

AbstractLet S be a set of n points in the plane in general position. Two line segments connecting pairs of points of Scross if they have an interior point in common. Two vertex-disjoint geometric graphs with vertices in Scross if there are two edges, one from each graph, which cross. A set of vertex-disjoint geometric graphs with vertices in S is called mutually crossing if any two of them cross. We show that there exists a constant c such that from any family of n mutually-crossing triangles, one can always obtain a family of at least $$n^c$$ n c mutually-crossing 2-paths (each of which is the result of deleting an edge from one of the triangles) and provide an example that implies that c cannot be taken to be larger than 2/3. Then, for every n we determine the maximum number of crossings that a Hamiltonian cycle on a set of n points might have, and give examples achieving this bound. Next, we construct a point set whose longest perfect matching contains no crossings. We also consider edges consisting of a horizontal and a vertical line segment joining pairs of points of S, which we call elbows, and prove that in any point set S there exists a family of $$\lfloor n/4 \rfloor $$ n / 4 vertex-disjoint mutually-crossing elbows. Additionally, we show a point set that admits no more than n/3 mutually-crossing elbows. Finally we study intersecting families of graphs, which are not necessarily vertex disjoint. A set of edge-disjoint graphs with vertices in S is called an intersecting family if for any two graphs in the set we can choose an edge in each of them such that they cross. We prove a conjecture by Lara and Rubio-Montiel (Acta Math Hung 15(2):301–311, 2019, https://doi.org/10.1007/s10474-018-0880-1), namely, that any set S of n points in general position admits a family of intersecting triangles with a quadratic number of elements. For points in convex position we prove that any set of 3n points in convex position contains a family with at least $$n^2$$ n 2 intersecting triangles.

Funder

Massachusetts Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3