Compatible Spanning Circuits and Forbidden Induced Subgraphs

Author:

Guo Zhiwei,Brause Christoph,Geißer Maximilian,Schiermeyer IngoORCID

Abstract

AbstractA compatible spanning circuit in an edge-colored graph G (not necessarily properly) is defined as a closed trail containing all vertices of G in which any two consecutively traversed edges have distinct colors. The existence of extremal compatible spanning circuits (i.e., compatible Hamilton cycles and compatible Euler tours) has been studied extensively. Recently, sufficient conditions for the existence of compatible spanning circuits visiting each vertex at least a specified number of times in specific edge-colored graphs satisfying certain degree conditions have been established. In this paper, we continue the research on sufficient conditions for the existence of such compatible s-panning circuits. We consider edge-colored graphs containing no certain forbidden induced subgraphs. As applications, we also consider the existence of such compatible spanning circuits in edge-colored graphs G with κ(G) ≥ α(G), κ(G) ≥ α(G) − 1 and κ (G) ≥ α(G), respectively. In this context, κ(G), α(G) and κ (G) denote the connectivity, the independence number and the edge connectivity of a graph G, respectively.

Funder

Technische Universität Bergakademie Freiberg

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Ahuja, S.K.: Algorithms for routing and channel assignment in wireless infrastructure networks. Ph.D. thesis, Univ. Arizona (2010)

2. Bang-Jensen, J., Maddaloni, A.: Sufficient conditions for a digraph to be supereulerian. J. Graph Theory 79, 8–20 (2015)

3. Bedrossian, P.: Forbidden subgraph and minimum degree conditions for hamiltonicity. Ph.D. thesis, Memphis State University (1991)

4. Benkouar, A., Manoussakis, Y., Paschos, VTh., Saad, R.: Hamiltonian problems in edge-colored complete graphs and eulerian cycles in edge-colored graphs: some complexity results. RAIRO Oper. Res. 30, 417–438 (1996)

5. Bondy, J.A., Murty, U.S.R.: Graph Theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3