Funder
American Institute of Mathematics
Simons Foundation
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Ministry of Science and Technology, Taiwan
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference8 articles.
1. AIM minimum rank-special graphs work group: Zero forcing sets and the minimum rank of graphs. Linear Algebra Appl. 428, 1628–1648 (2008)
2. Barioloi, F., Barret, W., Fallat, S.M., Hall, H.T., Hogben, L., Shader, B., van den Driessche, P., van der Holst, H.: Zero forcing parameters and minimum rank problems. Linear Algebra Appl. 433, 401–411 (2010)
3. Butler, S., Grout, J., Hall, H.T.: Using variants of zero forcing to bound the inertia set of a graph. Electron. J. Linear Algebra 30, 1–18 (2015)
4. Ekstrand, J., Erickson, C., Hall, H.T., Hay, D., Hogben, L., Johnson, R., Kingsley, N., Osborne, S., Peters, T., Roat, J., Ross, A., Row, D., Warnberg, N., Young, M.: Positive semidefinite zero forcing number. Linear Algebra Appl. 439, 1862–1874 (2013)
5. Fallat, S., Hogben, L.: Minimum rank, maximum nullity, and zero forcing number of graphs. In: Hogben, L. (ed.) Handbook of Linear Algebra, 2nd edn. CRC Press, Boca Raton (2014)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献