1. Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Di Battista, G., Zwick, U. (eds) Proceedings 11th annual european symposium on algorithms (ESA) 2003, Springer lecture notes in computer science 2832, 2003, pp. 78–89
2. Bolker, E.D., Roth, B.: When is a bipartite graph a rigid framework? Pacific J. Math. 90, 27–44 (1980)
3. Crapo, H., Whiteley, W.: Statics of frameworks and motions of panel structures, a projective geometric introduction. Shape Structural Topology 6, 43–82 (1982)
4. Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Geometric Topology Proceedings of the Conference, Park City, Utah, 1974, Lecture Notes in Mathematics, vol. 438, Springer, Berlin, 1975, pp. 225–239
5. Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity, AMS Graduate Studies in Mathematics Vol. 2, 1993