Abstract
AbstractPopielarz, Sahasrabuddhe and Snyder in 2018 proved that maximal $$K_{r+1}$$
K
r
+
1
-free graphs with $$(1-\frac{1}{r})\frac{n^2}{2}-o(n^{\frac{r+1}{r}})$$
(
1
-
1
r
)
n
2
2
-
o
(
n
r
+
1
r
)
edges contain a complete r-partite subgraph on $$n-o(n)$$
n
-
o
(
n
)
vertices. This was very recently extended to odd cycles in place of $$K_3$$
K
3
by Wang, Wang, Yang and Yuan. We further extend it to some other 3-chromatic graphs, and obtain some other stability results along the way.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
ELKH Alfréd Rényi Institute of Mathematics
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference21 articles.
1. Abbott, H.L., Hanson, F., Sauer, N.: Intersection theorems for systems of sets. J. Combin. Theory Ser. A 12(3), 381–389 (1972)
2. Alon, N., Shikhelman, C.: Many $$T$$ copies in $$H$$-free graphs. J. Combin. Theory Ser. B 121, 146–172 (2016)
3. Andrásfai, B., Erdős, P., Sós, V.T.: On the connection between chromatic number, maximal clique and minimum degree of a graph. Discrete Math. 8, 205–218 (1974)
4. Brouwer, A.: Some lotto numbers from an extension of Turán’s theorem. Afdeling Zuivere Wiskunde [Department of Pure Mathematics] 152 (1981)
5. Chvátal, V., Hanson, D.: Degrees and matchings. J. Combin. Theory Ser. B 20(2), 128–138 (1976)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献