Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference21 articles.
1. Barcucci, E., Del Lungo, A., Pergola, E., Pinzani, R.: A Construction for Enumerating k-Coloured Motzkin Paths. Computing and Combinatorics, pp. 254–263. Springer, Berlin Heidelberg (1995)
2. Barry, P.: Generalized narayana polynomials, riordan arrays, and lattice paths. J. Integer Seq. 15 (2012).
https://cs.uwaterloo.ca/journals/JIS/VOL15/Barry2/barry190r
. Accessed 1 Aug 2017
3. Chen, W.Y., Yan, S.H., Yang, L.L.: Identities from weighted motzkin paths. Adv. Appl. Math. 41(3), 329–334 (2008).
https://doi.org/10.1016/j.aam.2004.11.007
.
http://www.sciencedirect.com/science/article/pii/S0196885808000158
. Accessed 1 Sept 2018
4. Cheon, G.S., Kim, H., Shapiro, L.W.: Riordan group involutions. Linear Algebra Appl. 428(4), 941–952 (2008).
https://doi.org/10.1016/j.laa.2007.09.003
.
http://www.sciencedirect.com/science/article/pii/S0024379507004156
. Accessed 1 Aug 2017
5. Deutsch, E., Ferrari, L., Rinaldi, S.: Production matrices. Adv. Appl. Math. 34(1), 101–122 (2005).
https://doi.org/10.1016/j.aam.2004.05.002
.
http://www.sciencedirect.com/science/article/pii/S0196885804000673
. Accessed 1 Aug 2017
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献