Author:
Stones Rebecca J.,Lin Sheng,Liu Xiaoguang,Wang Gang
Funder
National Natural Science Foundation of China (CN)
Publisher
Springer Science and Business Media LLC
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference45 articles.
1. Alter, R.: How many Latin squares are there? Amer. Math. Monthly 82, 632–634 (1975)
2. Athreya, K.B., Pranesachar, C.R., Singhi, N.M.: On the number of Latin rectangles and chromatic polynomial of $${L}({K}_{r, s})$$ L ( K r , s ) . European J. Combin. 1, 9–17 (1980)
3. Bogart, K.P., Longyear, J.Q.: Counting $$3$$ 3 by $$n$$ n Latin rectangles. Proc. Amer. Math. Soc. 54, 463–467 (1976)
4. Browning, J., Stones, D.S., Wanless, I.M.: Bounds on the number of autotopisms and subsquares of a Latin square. Combinatorica 13(1), 11–22 (2013)
5. Carlitz, L.: Congruences connected with three-line Latin rectangles. Proc. Amer. Math. Soc. 4(1), 9–11 (1953)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献