On the Maximal Colorings of Complete Graphs Without Some Small Properly Colored Subgraphs

Author:

Fang Chunqiu,Győri ErvinORCID,Xiao Jimeng

Abstract

AbstractLet $$\mathrm{pr}(K_{n}, G)$$ pr ( K n , G ) be the maximum number of colors in an edge-coloring of $$K_{n}$$ K n with no properly colored copy of G. For a family $${\mathcal {F}}$$ F of graphs, let $$\mathrm{ex}(n, {\mathcal {F}})$$ ex ( n , F ) be the maximum number of edges in a graph G on n vertices which does not contain any graphs in $${\mathcal {F}}$$ F as subgraphs. In this paper, we show that $$\mathrm{pr}(K_{n}, G)-\mathrm{ex}(n, \mathcal {G'})=o(n^{2}), $$ pr ( K n , G ) - ex ( n , G ) = o ( n 2 ) , where $$\mathcal {G'}=\{G-M: M \text { is a matching of }G\}$$ G = { G - M : M is a matching of G } . Furthermore, we determine the value of $$\mathrm{pr}(K_{n}, P_{l})$$ pr ( K n , P l ) for sufficiently large n and the exact value of $$\mathrm{pr}(K_{n}, G)$$ pr ( K n , G ) , where G is $$C_{5}, C_{6}$$ C 5 , C 6 and $$K_{4}^{-}$$ K 4 - , respectively. Also, we give an upper bound and a lower bound of $$\mathrm{pr}(K_{n}, K_{2,3})$$ pr ( K n , K 2 , 3 ) .

Funder

China Sponsorship Council

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

ELKH Alfréd Rényi Institute of Mathematics

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

Reference21 articles.

1. Alon, N.: On a conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems. J. Graph Theory 7(1), 91–94 (1983)

2. Axenovich, M., Jiang, T.: Anti-Ramsey numbers for small complete bipartite graphs. Ars Combin. 73, 311–318 (2004)

3. Bialostocki, A., Gilboa, S., Roditty, Y.: Anti-Ramsey number of small graphs. Ars Combin. 123, 41–53 (2015)

4. Brown, W.G.: On graphs that do not contain a Thomsen graph. Can. Math. Bull. 9, 281–285 (1966)

5. Erdős, P., Gallai, T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3