Optimal Pebbling Number of the Square Grid

Author:

Győri Ervin,Katona Gyula Y.,Papp László F.

Abstract

AbstractA pebbling move on a graph removes two pebbles from a vertex and adds one pebble to an adjacent vertex. A vertex is reachable from a pebble distribution if it is possible to move a pebble to that vertex using pebbling moves. The optimal pebbling number $$\pi _{{{\,\mathrm{opt}\,}}}$$πopt is the smallest number m needed to guarantee a pebble distribution of m pebbles from which any vertex is reachable. The optimal pebbling number of the square grid graph $$P_n\square P_m$$PnPm was investigated in several papers (Bunde et al. in J Graph Theory 57(3):215–238, 2008; Xue and Yerger in Graphs Combin 32(3):1229–1247, 2016; Győri et al. in Period Polytech Electr Eng Comput Sci 61(2):217–223 2017). In this paper, we present a new method using some recent ideas to give a lower bound on $$\pi _{{{\,\mathrm{opt}\,}}}$$πopt. We apply this technique to prove that $$\pi _{{{\,\mathrm{opt}\,}}}(P_n\square P_m)\ge \frac{2}{13}nm$$πopt(PnPm)213nm. Our method also gives a new proof for $$\pi _{{{\,\mathrm{opt}\,}}}(P_n)=\pi _{{{\,\mathrm{opt}\,}}}(C_n)=\left\lceil \frac{2n}{3}\right\rceil$$πopt(Pn)=πopt(Cn)=2n3.

Funder

Országos Tudományos Kutatási Alapprogramok

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3