Injective Split Systems

Author:

Hellmuth M.,Huber K. T.,Moulton V.,Scholz G. E.ORCID,Stadler P. F.

Abstract

AbstractA split system$$\mathcal S$$Son a finite setX,$$|X|\ge 3$$|X|3, is a set of bipartitions or splits ofXwhich contains all splits of the form$$\{x,X-\{x\}\}$${x,X-{x}},$$x \in X$$xX. To any such split system$$\mathcal S$$Swe can associate the Buneman graph$$\mathcal B(\mathcal S)$$B(S)which is essentially a median graph with leaf-setXthat displays the splits in$$\mathcal S$$S. In this paper, we consider properties of injective split systems, that is, split systems$$\mathcal S$$Swith the property that$${{\,\textrm{med}\,}}_{\mathcal B(\mathcal S)}(Y) \ne {{\,\textrm{med}\,}}_{\mathcal B(\mathcal S)}(Y')$$medB(S)(Y)medB(S)(Y)for any 3-subsets$$Y,Y'$$Y,YinX, where$${{\,\textrm{med}\,}}_{\mathcal B(\mathcal S)}(Y)$$medB(S)(Y)denotes the median in$$\mathcal B(\mathcal S)$$B(S)of the three elements inYconsidered as leaves in$$\mathcal B(\mathcal S)$$B(S). In particular, we show that for any setXthere always exists an injective split system onX, and we also give a characterization for when a split system is injective. We also consider how complex the Buneman graph$$\mathcal B(\mathcal S)$$B(S)needs to become in order for a split system$$\mathcal S$$SonXto be injective. We do this by introducing a quantity for |X| which we call the injective dimension for |X|, as well as two related quantities, called the injective 2-split and the rooted-injective dimension. We derive some upper and lower bounds for all three of these dimensions and also prove that some of these bounds are tight. An underlying motivation for studying injective split systems is that they can be used to obtain a natural generalization of symbolic tree maps. An important consequence of our results is that any three-way symbolic map onXcan be represented using Buneman graphs.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3