Author:
Iliesiu Luca,Koloğlu Murat,Simmons-Duffin David
Abstract
Abstract
We estimate thermal one-point functions in the 3d Ising CFT using the operator product expansion (OPE) and the Kubo-Martin-Schwinger (KMS) condition. Several operator dimensions and OPE coefficients of the theory are known from the numerical bootstrap for flat-space four-point functions. Taking this data as input, we use a thermal Lorentzian inversion formula to compute thermal one-point coefficients of the first few Regge trajectories in terms of a small number of unknown parameters. We approximately determine the unknown parameters by imposing the KMS condition on the two-point functions 〈σσ〉 and 〈ϵϵ〉. As a result, we estimate the one-point functions of the lowest-dimension ℤ2-even scalar ϵ and the stress energy tensor T
μν
. Our result for 〈σσ〉 at finite-temperature agrees with Monte-Carlo simulations within a few percent, inside the radius of convergence of the OPE.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献