Author:
Brauner Tomáš,Filios Georgios,Kolešová Helena
Abstract
Abstract
Recently, it has been shown that the ground state of quantum chromodynamics (QCD) in sufficiently strong magnetic fields and at moderate baryon number chemical po- tential carries a crystalline condensate of neutral pions: the chiral soliton lattice (CSL) [1]. While the result was obtained in a model-independent manner using effective field the- ory techniques, its realization from first principles using lattice Monte Carlo simulation is hampered by the infamous sign problem. Here we show that CSL, or a similar inhomoge- neous phase, also appears in the phase diagram of a class of vector-like gauge theories that do not suffer from the sign problem even in the presence of a baryon chemical potential and external magnetic field. We also show that the onset of nonuniform order manifests itself already in the adjacent homogeneous Bose-Einstein-condensation phase through a characteristic roton-like minimum in the dispersion relation of the lowest-lying quasipar- ticle mode. Last but not least, our work gives a class of explicit counterexamples to the long-standing conjecture that positivity of the determinant of the Dirac operator (that is, absence of the sign problem) in a vector-like gauge theory precludes spontaneous breaking of translational invariance, and thus implies the absence of inhomogeneous phases in the phase diagram of the theory.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献