Tensor bounds on the hidden universe

Author:

del Rio Adrián,Durrer Ruth,Patil Subodh P.

Abstract

Abstract During single clock inflation, hidden fields (i.e. fields coupled to the inflaton only gravitationally) in their adiabatic vacua can ordinarily only affect observables through virtual effects. After renormalizing background quantities (fixed by observations at some pivot scale), all that remains are logarithmic runnings in correlation functions that are both Planck and slow roll suppressed. In this paper we show how a large number of hidden fields can partially compensate this suppression and generate a potentially observable running in the tensor two point function, consistently inferable courtesy of a large N resummation. We detour to address certain subtleties regarding loop corrections during inflation, extending the analysis of [1]. Our main result is that one can extract bounds on the hidden field content of the universe from bounds on violations of the consistency relation between the tensor spectral index and the tensor to scalar ratio, were primordial tensors ever detected. Such bounds are more competitive than the naive bound inferred from requiring inflation to occur below the strong coupling scale of gravity if deviations from the consistency relation can be bounded to within the sub-percent level. We discuss how one can meaningfully constrain the parameter space of various phenomenological scenarios and constructions that address naturalness with a large number of species (such as ‘N-naturalness’) with CMB observations up to cosmic variance limits, and possibly future 21cm and gravitational wave observations.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference42 articles.

1. L. Senatore and M. Zaldarriaga, On loops in inflation, JHEP 12 (2010) 008 [arXiv:0912.2734] [INSPIRE].

2. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

3. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389.

4. V.F. Mukhanov and G.V. Chibisov, Quantum fluctuations and a nonsingular universe, JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].

5. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe, JETP Lett. 30 (1979) 682 [INSPIRE].

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3