Early predictive model for breast cancer classification using blended ensemble learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Strategy and Management,Safety, Risk, Reliability and Quality
Link
https://link.springer.com/content/pdf/10.1007/s13198-022-01696-0.pdf
Reference27 articles.
1. Agarap AFM (2018) [ACM Press the 2nd international conference—Phu Quoc Island, Viet Nam (2018.02.02–2018.02.04)] Proceedings of the 2nd international conference on machine learning and soft computing—ICMLSC '18—“On breast cancer detection”, pp 5–9
2. Akbugday B (2019) 2019 Medical Technologies Congress (TIPTEKNO)—Izmir, Turkey (2019.10.3–2019.10.5)] 2019 Medical Technologies Congress (TIPTEKNO)—“Classification of Breast Cancer Data Using Machine Learning Algorithms”, pp 1–4
3. Aslan MF, Celik Y, Sabanci K, Durdu A (2018) Breast cancer diagnosis by different machine learning methods using blood analysis data. Int J Intell Syst Appl Eng 6(4):289–293
4. Asri H, Mousannif H, Al Moatassime H, Noel T (2016) Using machine learning algorithms for breast cancer risk prediction and diagnosis. Procedia Comput Sci 83:1064–1069
5. Assiri AS, Nazir S, Velastin SA (2020) Breast tumor classification using an ensemble machine learning method. J Imaging 6(6):39
Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Breast Cancer Prediction Web Model;International Journal of Scientific Research in Science and Technology;2024-05-20
2. Deep transfer learning with fuzzy ensemble approach for the early detection of breast cancer;BMC Medical Imaging;2024-04-08
3. A modified reverse-based analysis logic mining model with Weighted Random 2 Satisfiability logic in Discrete Hopfield Neural Network and multi-objective training of Modified Niched Genetic Algorithm;Expert Systems with Applications;2024-04
4. Breast Cancer Data Classification Using Cluster Based Ensemble Machine Learning;2024 IEEE International Conference for Women in Innovation, Technology & Entrepreneurship (ICWITE);2024-02-16
5. Hi-Le and HiTCLe: Ensemble Learning Approaches for Early Diabetes Detection Using Deep Learning and Explainable Artificial Intelligence;IEEE Access;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3