Publisher
Springer Science and Business Media LLC
Subject
Strategy and Management,Safety, Risk, Reliability and Quality
Reference23 articles.
1. Aganj I, Harisinghani MG, Weissleder R, Fischl B (2018) Unsupervised medical image segmentation based on the local center of mass. Sci Rep 8:13012. https://doi.org/10.1038/s41598-018-31333-5
2. Amin J, Sharif M, Anjum MA, Raza M, Bukhari SAC (2020) Convolutional neural network with batch normalization for glioma and stroke lesion detection using MRI, Cogn. Syst Res 59:304–311. https://doi.org/10.1016/j.cogsys.2019.10.002
3. Awasthi N, Pardasani R, Gupta S (2021) Multi-threshold attention u-net (mtau) based model for multimodal brain tumor segmentation in mri scans. InBrainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6 2021 (pp. 168-178). Springer International Publishing. https://doi.org/10.1007/978-3-030-72087-2_15.
4. Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS, Freymann JB, Farahani K, Davatzikos C (2017) Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci Data 4:170117. https://doi.org/10.1038/sdata.2017.117
5. Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, Shinohara RT, Berger C, Ha SM, Rozycki M, Prastawa M (2018) Identifying the best machine learning algorithms for brain tumor segmentation. progression assessment, and overall survival prediction in the BRATS challenge. 2018 Nov 10.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献