Adaptive remaining useful life prediction framework with stochastic failure threshold for experimental bearings with different lifetimes under contaminated condition

Author:

Tajiani BaharehORCID,Vatn Jørn

Abstract

AbstractDeterioration modelling and remaining useful life (RUL) prediction of roller bearings is critical to ensure a safe, reliable, and efficient operation of rotating machinery. RUL prediction models in model-based approaches are often based on constant failure threshold and time-domain features for bearings’ failure prognosis. Due to nonlinearity of the acceleration signals, noises, and measurement errors, the time-domain features used as condition indicators are unable to track bearings’ degradation successfully and they are mostly utilized for fault diagnosis, especially in the fault classification field using machine learning algorithms. This paper proposes an adaptive RUL prediction framework with a stochastic failure threshold which comprises of two main phases of feature extraction and RUL prediction using laboratory-acquired accelerated life test data obtained from contaminated bearings. The first phase is to decompose the empirical input signals into different frequency bands using some time–frequency transformation functions and extract several condition indicators for the second phase. The second phase is based on a stochastic Wiener process while the key parameters of the model are updated iteratively using a Bayesian approach, and RUL at different degradation datapoints is computed numerically. The experimental results showed the good performance of the developed framework. Some factors affecting RUL prediction such as the length of bearing samples, and degradation mechanism are highlighted in the result. The results of this paper can be further used for an effective maintenance optimization, determining an optimal maintenance alarm threshold, improving the reliability and safety of rotating machinery, and reducing the downtime cost.

Funder

NTNU Norwegian University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Strategy and Management,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3