Set characterizations and convex extensions for geometric convex-hull proofs

Author:

Bärmann Andreas,Schneider Oskar

Abstract

AbstractIn the present work, we consider Zuckerberg’s method for geometric convex-hull proofs introduced in Zuckerberg (Oper Res Lett 44(5):625–629, 2016). It has only been scarcely adopted in the literature so far, despite the great flexibility in designing algorithmic proofs for the completeness of polyhedral descriptions that it offers. We suspect that this is partly due to the rather heavy algebraic framework its original statement entails. This is why we present a much more lightweight and accessible approach to Zuckerberg’s proof technique, building on ideas from Gupte et al. (Discrete Optim 36:100569, 2020). We introduce the concept of set characterizations to replace the set-theoretic expressions needed in the original version and to facilitate the construction of algorithmic proof schemes. Along with this, we develop several different strategies to conduct Zuckerberg-type convex-hull proofs. Very importantly, we also show that our concept allows for a significant extension of Zuckerberg’s proof technique. While the original method was only applicable to 0/1-polytopes, our extended framework allows to treat arbitrary polyhedra and even general convex sets. We demonstrate this increase in expressive power by characterizing the convex hull of Boolean and bilinear functions over polytopal domains. All results are illustrated with indicative examples to underline the practical usefulness and wide applicability of our framework.

Funder

Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference22 articles.

1. Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0–1 integer programming. SIAM J. Optim. 15(1), 63–95 (2004)

2. Bienstock, D., Zuckerberg, M.: Simpler derivation of bounded pitch inequalities for set covering, and minimum knapsack sets. arXiv preprint arXiv:1806.07435 (2018)

3. Bärmann, A., Gellermann, T., Merkert, M., Schneider, O.: Staircase compatibility and its applications in scheduling and piecewise linearization. Discrete Optim. 29, 111–132 (2018)

4. Bärmann, A., Gemander, P., Martin, A., Merkert, M.: On recognizing staircase compatibility. http://www.optimization-online.org/DB_FILE/2020/12/8138.pdf (2020)

5. Bärmann, A., Gemander, P., Merkert, M.: The clique problem with multiple-choice constraints under a cycle-free dependency graph. Discrete Appl. Math. 283, 59–77 (2020)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3