Optimal algorithms for differentially private stochastic monotone variational inequalities and saddle-point problems

Author:

Boob DigvijayORCID,Guzmán Cristóbal

Abstract

AbstractIn this work, we conduct the first systematic study of stochastic variational inequality (SVI) and stochastic saddle point (SSP) problems under the constraint of differential privacy (DP). We propose two algorithms: Noisy Stochastic Extragradient (NSEG) and Noisy Inexact Stochastic Proximal Point (NISPP). We show that a stochastic approximation variant of these algorithms attains risk bounds vanishing as a function of the dataset size, with respect to the strong gap function; and a sampling with replacement variant achieves optimal risk bounds with respect to a weak gap function. We also show lower bounds of the same order on weak gap function. Hence, our algorithms are optimal. Key to our analysis is the investigation of algorithmic stability bounds, both of which are new even in the nonprivate case. The dependence of the running time of the sampling with replacement algorithms, with respect to the dataset sizen, is$$n^2$$n2for NSEG and$${\widetilde{O}}(n^{3/2})$$O~(n3/2)for NISPP.

Funder

Fondo de Fomento al Desarrollo Científico y Tecnológico

Millennium Science Initiative

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference50 articles.

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308–318. ACM (2016)

2. Asi, H., Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: optimal rates in l1 geometry. In: M. Meila, T. Zhang (eds.) Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 139, pp. 393–403. PMLR (2021)

3. Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104(1), 39–68 (2005)

4. Bassily, R., Feldman, V., Guzmán, C., Talwar, K.: Stability of stochastic gradient descent on nonsmooth convex losses. In: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4381–4391. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/2e2c4bf7ceaa4712a72dd5ee136dc9a8-Paper.pdf

5. Bassily, R., Feldman, V., Talwar, K., Guha Thakurta, A.: Private stochastic convex optimization with optimal rates. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3