1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, pp. 308–318. ACM (2016)
2. Asi, H., Feldman, V., Koren, T., Talwar, K.: Private stochastic convex optimization: optimal rates in l1 geometry. In: M. Meila, T. Zhang (eds.) Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 139, pp. 393–403. PMLR (2021)
3. Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Program. 104(1), 39–68 (2005)
4. Bassily, R., Feldman, V., Guzmán, C., Talwar, K.: Stability of stochastic gradient descent on nonsmooth convex losses. In: H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 4381–4391. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/2e2c4bf7ceaa4712a72dd5ee136dc9a8-Paper.pdf
5. Bassily, R., Feldman, V., Talwar, K., Guha Thakurta, A.: Private stochastic convex optimization with optimal rates. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)