An optimal monotone contention resolution scheme for bipartite matchings via a polyhedral viewpoint

Author:

Bruggmann SimonORCID,Zenklusen Rico

Abstract

AbstractRelaxation and rounding approaches became a standard and extremely versatile tool for constrained submodular function maximization. One of the most common rounding techniques in this context are contention resolution schemes. Such schemes round a fractional point by first rounding each coordinate independently, and then dropping some elements to reach a feasible set. Also the second step, where elements are dropped, is typically randomized. This leads to an additional source of randomization within the procedure, which can complicate the analysis. We suggest a different, polyhedral viewpoint to design contention resolution schemes, which avoids to deal explicitly with the randomization in the second step. This is achieved by focusing on the marginals of a dropping procedure. Apart from avoiding one source of randomization, our viewpoint allows for employing polyhedral techniques. Both can significantly simplify the construction and analysis of contention resolution schemes. We show how, through our framework, one can obtain an optimal monotone contention resolution scheme for bipartite matchings, which has a balancedness of 0.4762. So far, only very few results are known about optimality of monotone contention resolution schemes. Our contention resolution scheme for the bipartite case also improves the lower bound on the correlation gap for bipartite matchings. Furthermore, we derive a monotone contention resolution scheme for matchings that significantly improves over the previously best one. More precisely, we obtain a balancedness of 0.4326, improving on a prior 0.1997-balanced scheme. At the same time, our scheme implies that the currently best lower bound on the correlation gap for matchings is not tight. Our results lead to improved approximation factors for various constrained submodular function maximization problems over a combination of matching constraints with further constraints.

Funder

Swiss National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On (Random-Order) Online Contention Resolution Schemes for the Matching Polytope of (Bipartite) Graphs;Operations Research;2024-09-13

2. Constrained Submodular Maximization via New Bounds for DR-Submodular Functions;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

3. Random-Order Contention Resolution via Continuous Induction: Tightness for Bipartite Matching under Vertex Arrivals;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Improved Online Contention Resolution for Matchings and Applications to the Gig Economy;Mathematics of Operations Research;2023-08-18

5. Towards an Optimal Contention Resolution Scheme for Matchings;Integer Programming and Combinatorial Optimization;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3