Abstract
AbstractA tensegrity is a structure made from cables, struts, and stiff bars. A d-dimensional tensegrity is universally rigid if it is rigid in any dimension $$d'$$
d
′
with $$d'\ge d$$
d
′
≥
d
. The celebrated super stability condition due to Connelly gives a sufficient condition for a tensegrity to be universally rigid. Gortler and Thurston showed that super stability characterizes universal rigidity when the point configuration is generic and every member is a stiff bar. We extend this result in two directions. We first show that a generic universally rigid tensegrity is super stable. We then extend it to tensegrities with point group symmetry, and show that this characterization still holds as long as a tensegrity is generic modulo symmetry. Our strategy is based on the block-diagonalization technique for symmetric semidefinite programming problems, and our proof relies on the theory of real irreducible representations of finite groups.
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献