Linear regression with partially mismatched data: local search with theoretical guarantees

Author:

Mazumder RahulORCID,Wang Haoyue

Abstract

AbstractLinear regression is a fundamental modeling tool in statistics and related fields. In this paper, we study an important variant of linear regression in which the predictor-response pairs are partially mismatched. We use an optimization formulation to simultaneously learn the underlying regression coefficients and the permutation corresponding to the mismatches. The combinatorial structure of the problem leads to computational challenges. We propose and study a simple greedy local search algorithm for this optimization problem that enjoys strong theoretical guarantees and appealing computational performance. We prove that under a suitable scaling of the number of mismatched pairs compared to the number of samples and features, and certain assumptions on problem data; our local search algorithm converges to a nearly-optimal solution at a linear rate. In particular, in the noiseless case, our algorithm converges to the global optimal solution with a linear convergence rate. Based on this result, we prove an upper bound for the estimation error of the parameter. We also propose an approximate local search step that allows us to scale our approach to much larger instances. We conduct numerical experiments to gather further insights into our theoretical results, and show promising performance gains compared to existing approaches.

Funder

Office of Naval Research

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference26 articles.

1. Abid, A., Poon, A., Zou, J.: Linear regression with shuffled labels. arXiv preprint arXiv:1705.01342 (2017)

2. Abid, A., Zou, J.: Stochastic EM for shuffled linear regression. arXiv preprint arXiv:1804.00681 (2018)

3. Balakrishnan, A.V.: On the problem of time jitter in sampling. IRE Transactions on Information Theory 8(3), 226–236 (1962)

4. Blackman, S.S.: Multiple-target tracking with radar applications. Artech House, Norwood, MA (1986)

5. DeGroot, M.H., Feder, P.I., Goel, P.K.: Matchmaking. Ann. Math. Stat. 42(2), 578–593 (1971)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3