Author:
Cheung Kevin K. H.,Cunningham William H.,Tang Lawrence
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Reference11 articles.
1. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for MULTIWAY CUT. Proc. ACM Symp. Theory Comput. 1998, pp. 48–52
2. Calinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for MULTIWAY CUT. J. Comput. Syst. Sci. 60, 564–574 (2000)
3. Cheung, K.K.H., Cunningham, W.H., Tang, L.: Optimal 3-terminal cuts and linear programming. Technical Report CORR 2002-24, Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, August 2002
4. Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21, 51–89 (1991)
5. Cunningham, W.H.: The optimal multiterminal cut problem. In: C. Monma, F. Hwang (eds.), Reliability of Computer and Communications Networks, American Math. Soc., 1991, pp. 105–120
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. $$\ell _p$$-Norm Multiway Cut;Algorithmica;2022-05-23
2. The metric relaxation for
0
-extension admits an
Ω(log
2/3
k)
gap;Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing;2021-06-15
3. Improving the integrality gap for multiway cut;Mathematical Programming;2020-03-06
4. A tight $$\sqrt{2}$$-approximation for linear 3-cut;Mathematical Programming;2019-07-29
5. Improving the Integrality Gap for Multiway Cut;Integer Programming and Combinatorial Optimization;2019