From approximate to exact integer programming

Author:

Dadush Daniel,Eisenbrand Friedrich,Rothvoss ThomasORCID

Abstract

AbstractApproximate integer programming is the following: For a given convex body $$K \subseteq {\mathbb {R}}^n$$ K R n , either determine whether $$K \cap {\mathbb {Z}}^n$$ K Z n is empty, or find an integer point in the convex body $$2\cdot (K - c) +c$$ 2 · ( K - c ) + c which is K, scaled by 2 from its center of gravity c. Approximate integer programming can be solved in time $$2^{O(n)}$$ 2 O ( n ) while the fastest known methods for exact integer programming run in time $$2^{O(n)} \cdot n^n$$ 2 O ( n ) · n n . So far, there are no efficient methods for integer programming known that are based on approximate integer programming. Our main contribution are two such methods, each yielding novel complexity results. First, we show that an integer point $$x^* \in (K \cap {\mathbb {Z}}^n)$$ x ( K Z n ) can be found in time $$2^{O(n)}$$ 2 O ( n ) , provided that the remainders of each component $$x_i^* \mod \ell $$ x i mod for some arbitrarily fixed $$\ell \ge 5(n+1)$$ 5 ( n + 1 ) of $$x^*$$ x are given. The algorithm is based on a cutting-plane technique, iteratively halving the volume of the feasible set. The cutting planes are determined via approximate integer programming. Enumeration of the possible remainders gives a $$2^{O(n)}n^n$$ 2 O ( n ) n n algorithm for general integer programming. This matches the current best bound of an algorithm by Dadush (Integer programming, lattice algorithms, and deterministic, vol. Estimation. Georgia Institute of Technology, Atlanta, 2012) that is considerably more involved. Our algorithm also relies on a new asymmetric approximate Carathéodory theorem that might be of interest on its own. Our second method concerns integer programming problems in equation-standard form $$Ax = b, 0 \le x \le u, \, x \in {\mathbb {Z}}^n$$ A x = b , 0 x u , x Z n . Such a problem can be reduced to the solution of $$\prod _i O(\log u_i +1)$$ i O ( log u i + 1 ) approximate integer programming problems. This implies, for example that knapsack or subset-sum problems with polynomial variable range$$0 \le x_i \le p(n)$$ 0 x i p ( n ) can be solved in time $$(\log n)^{O(n)}$$ ( log n ) O ( n ) . For these problems, the best running time so far was $$n^n \cdot 2^{O(n)}$$ n n · 2 O ( n ) .

Funder

European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

National Science Foundation

David and Lucile Packard Foundation

Publisher

Springer Science and Business Media LLC

Reference35 articles.

1. Algorithms and Combinatorics;M Grötschel,1988

2. Handbooks in Operations Research and Management Science;GL Nemhauser,1989

3. Schrijver, A.: Polyhedral combinatorics. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of combinatorics, pp. 1649–1704. Elsevier, New York (1995)

4. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

5. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3), 415–440 (1987)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3