The limits of local search for weighted k-set packing

Author:

Neuwohner MeikeORCID

Abstract

AbstractWe consider the weighted k-set packing problem, where, given a collection $${\mathcal {S}}$$ S of sets, each of cardinality at most k, and a positive weight function $$w:{\mathcal {S}}\rightarrow {\mathbb {Q}}_{>0}$$ w : S Q > 0 , the task is to find a sub-collection of $${\mathcal {S}}$$ S consisting of pairwise disjoint sets of maximum total weight. As this problem does not permit a polynomial-time $$o(\frac{k}{\log k})$$ o ( k log k ) -approximation unless $$P=NP$$ P = N P (Hazan et al. in Comput Complex 15:20–39, 2006. https://doi.org/10.1007/s00037-006-0205-6), most previous approaches rely on local search. For twenty years, Berman’s algorithm SquareImp (Berman, in: Scandinavian workshop on algorithm theory, Springer, 2000. https://doi.org/10.1007/3-540-44985-X_19), which yields a polynomial-time $$\frac{k+1}{2}+\epsilon $$ k + 1 2 + ϵ -approximation for any fixed $$\epsilon >0$$ ϵ > 0 , has remained unchallenged. Only recently, it could be improved to $$\frac{k+1}{2}-\frac{1}{63,700,993}$$ k + 1 2 - 1 63 , 700 , 993 by Neuwohner (38th International symposium on theoretical aspects of computer science (STACS 2021), Leibniz international proceedings in informatics (LIPIcs), 2021. https://doi.org/10.4230/LIPIcs.STACS.2021.53). In her paper, she showed that instances for which the analysis of SquareImp is almost tight are “close to unweighted” in a certain sense. But for the unit weight variant, the best known approximation guarantee is $$\frac{k+1}{3}+\epsilon $$ k + 1 3 + ϵ (Fürer and Yu in International symposium on combinatorial optimization, Springer, 2014. https://doi.org/10.1007/978-3-319-09174-7_35). Using this observation as a starting point, we conduct a more in-depth analysis of close-to-tight instances of SquareImp. This finally allows us to generalize techniques used in the unweighted case to the weighted setting. In doing so, we obtain approximation guarantees of $$\frac{k+\epsilon _k}{2}$$ k + ϵ k 2 , where $$\lim _{k\rightarrow \infty } \epsilon _k = 0$$ lim k ϵ k = 0 . On the other hand, we prove that this is asymptotically best possible in that local improvements of logarithmically bounded size cannot produce an approximation ratio below $$\frac{k}{2}$$ k 2 .

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3