Distributionally robust stochastic programs with side information based on trimmings

Author:

Esteban-Pérez AdriánORCID,Morales Juan M.ORCID

Abstract

AbstractWe consider stochastic programs conditional on some covariate information, where the only knowledge of the possible relationship between the uncertain parameters and the covariates is reduced to a finite data sample of their joint distribution. By exploiting the close link between the notion of trimmings of a probability measure and the partial mass transportation problem, we construct a data-driven Distributionally Robust Optimization (DRO) framework to hedge the decision against the intrinsic error in the process of inferring conditional information from limited joint data. We show that our approach is computationally as tractable as the standard (without side information) Wasserstein-metric-based DRO and enjoys performance guarantees. Furthermore, our DRO framework can be conveniently used to address data-driven decision-making problems under contaminated samples. Finally, the theoretical results are illustrated using a single-item newsvendor problem and a portfolio allocation problem with side information.

Funder

H2020 European Research Council

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference45 articles.

1. Agulló Antolín, M.: Trimming methods for model validation and supervised classification in the presence of contamination. Ph.D. thesis (2018). http://uvadoc.uva.es/handle/10324/31682

2. Álvarez-Esteban, del Barrio, E., Cuesta-Albertos, J.A., Matrán, C.: Similarity of samples and trimming. Bernoulli 18(2), 606–634 (2012)

3. Álvarez-Esteban, P.C., del Barrio, E., Cuesta-Albertos, J.A., Matrán, C.: Uniqueness and approximate computation of optimal incomplete transportation plans. Ann. Inst. Henri Poincare-Probab. Stat. 47(2), 358–375 (2011)

4. Balghiti, O.E., Elmachtoub, A.N., Grigas, P., Tewari, A.: Generalization bounds in the predict-then-optimize framework (2019). arXiv:1905.11488

5. Ban, G.Y., Rudin, C.: The big data newsvendor: Practical insights from machine learning. Oper. Res. 67(1), 90–108 (2019). https://doi.org/10.1287/opre.2018.1757

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3