1. Agulló Antolín, M.: Trimming methods for model validation and supervised classification in the presence of contamination. Ph.D. thesis (2018). http://uvadoc.uva.es/handle/10324/31682
2. Álvarez-Esteban, del Barrio, E., Cuesta-Albertos, J.A., Matrán, C.: Similarity of samples and trimming. Bernoulli 18(2), 606–634 (2012)
3. Álvarez-Esteban, P.C., del Barrio, E., Cuesta-Albertos, J.A., Matrán, C.: Uniqueness and approximate computation of optimal incomplete transportation plans. Ann. Inst. Henri Poincare-Probab. Stat. 47(2), 358–375 (2011)
4. Balghiti, O.E., Elmachtoub, A.N., Grigas, P., Tewari, A.: Generalization bounds in the predict-then-optimize framework (2019). arXiv:1905.11488
5. Ban, G.Y., Rudin, C.: The big data newsvendor: Practical insights from machine learning. Oper. Res. 67(1), 90–108 (2019). https://doi.org/10.1287/opre.2018.1757