General bounds for incremental maximization
-
Published:2020-10-20
Issue:
Volume:
Page:
-
ISSN:0025-5610
-
Container-title:Mathematical Programming
-
language:en
-
Short-container-title:Math. Program.
Author:
Bernstein Aaron, Disser YannORCID, Groß Martin, Himburg Sandra
Abstract
AbstractWe propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value $$k\in {\mathbb {N}}$$
k
∈
N
that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all k between the incremental solution after k steps and an optimum solution of cardinality k. We consider a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental algorithm for this class of problems, and we show that no algorithm can have competitive ratio below 2.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) d-dimensional matching, maximum (weighted) (b-)matching and a variant of the maximum flow problem. We show a general bound for the competitive ratio of the greedy algorithm on the class of problems that satisfy this relaxed submodularity condition. Our bound generalizes the (tight) bound of 1.58 slightly beyond sub-modular functions and yields a tight bound of 2.313 for maximum (weighted) (b-)matching. Our bound is also tight for a more general class of functions as the relevant parameter goes to infinity. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems, and our bounds for the greedy algorithm carry over both.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
General Mathematics,Software
Reference33 articles.
1. Bernstein, A., Disser, Y., Groß, M.: General bounds for incremental maximization. In: Proceedings of the 44th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 43:1–43:14 (2017) 2. Blum, A., Chalasani, P., Coppersmith, D., Pulleyblank, B., Raghavan, P., Sudan, M.: The minimum latency problem. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing (STOC), pp. 163–171 (1994) 3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998) 4. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information retrieval. SIAM J. Comput. 33(6), 1417–1440 (2004) 5. Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Incremental medians via online bidding. Algorithmica 50(4), 455–478 (2007)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|