The greedy strategy for optimizing the Perron eigenvalue

Author:

Cvetković Aleksandar,Protasov Vladimir Yu.ORCID

Abstract

AbstractWe address the problems of minimizing and of maximizing the spectral radius over a compact family of non-negative matrices. Those problems being hard in general can be efficiently solved for some special families. We consider the so-called product families, where each matrix is composed of rows chosen independently from given sets. A recently introduced greedy method works very fast. However, it is applicable mostly for strictly positive matrices. For sparse matrices, it often diverges and gives a wrong answer. We present the “selective greedy method” that works equally well for all non-negative product families, including sparse ones. For this method, we prove a quadratic rate of convergence and demonstrate its efficiency in numerical examples. The numerical examples are realised for two cases: finite uncertainty sets and polyhedral uncertainty sets given by systems of linear inequalities. In dimensions up to 2000, the matrices with minimal/maximal spectral radii in product families are found within a few iterations. Applications to dynamical systems and to the graph theory are considered.

Funder

RFBR grant

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference39 articles.

1. Akian, M., Gaubert, S., Grand-Clément, J., Guillaud, J.: The operator approach to entropy games. Syst, Theory Comput (2019). https://doi.org/10.1007/s00224-019-09925-z

2. Altman, E.: Constrained Markov Decision Process. INRIA (2004)

3. Anderson, J.: Distance to the nearest stable Metzler matrix. arXiv:1709.02461v1 (2017)

4. Asarin, E., Cervelle, J., Degorre, A., Dima, C., Horn, F., Kozyakin, V.: Entropy games and matrix multiplication games. In: 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), February 2016, Orléans, France, pp. 11:1–11:14

5. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, Hoboken (1989)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3