Hessian barrier algorithms for non-convex conic optimization

Author:

Dvurechensky PavelORCID,Staudigl Mathias

Abstract

AbstractA key problem in mathematical imaging, signal processing and computational statistics is the minimization of non-convex objective functions that may be non-differentiable at the relative boundary of the feasible set. This paper proposes a new family of first- and second-order interior-point methods for non-convex optimization problems with linear and conic constraints, combining logarithmically homogeneous barriers with quadratic and cubic regularization respectively. Our approach is based on a potential-reduction mechanism and, under the Lipschitz continuity of the corresponding derivative with respect to the local barrier-induced norm, attains a suitably defined class of approximate first- or second-order KKT points with worst-case iteration complexity $$O(\varepsilon ^{-2})$$ O ( ε - 2 ) (first-order) and $$O(\varepsilon ^{-3/2})$$ O ( ε - 3 / 2 ) (second-order), respectively. Based on these findings, we develop new path-following schemes attaining the same complexity, modulo adjusting constants. These complexity bounds are known to be optimal in the unconstrained case, and our work shows that they are upper bounds in the case with complicated constraints as well. To the best of our knowledge, this work is the first which achieves these worst-case complexity bounds under such weak conditions for general conic constrained non-convex optimization problems.

Funder

European Cooperation in Science and Technology

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3