On computing small variable disjunction branch-and-bound trees

Author:

Gläser Max,Pfetsch Marc E.ORCID

Abstract

AbstractThis article investigates smallest branch-and-bound trees and their computation. We first revisit the notion of hiding sets to deduce lower bounds on the size of branch-and-bound trees for certain binary programs, using both variable disjunctions and general disjunctions. We then provide exponential lower bounds for variable disjunctions by a disjoint composition of smaller binary programs. Moreover, we investigate the complexity of finding small branch-and-bound trees using variable disjunctions: We show that it is not possible to approximate the size of a smallest branch-and-bound tree within a factor of $$\smash {2^{\frac{1}{5}n}}$$ 2 1 5 n in time $$O(2^{\delta n})$$ O ( 2 δ n ) with $$\delta <\tfrac{1}{5}$$ δ < 1 5 , unless the strong exponential time hypothesis fails. Similarly, for any $$\varepsilon > 0$$ ε > 0 , no polynomial time $$\smash {2^{(\frac{1}{2} - \varepsilon )n}}$$ 2 ( 1 2 - ε ) n -approximation is possible, unless $$\text {P} = \text {NP} $$ P = NP . We also show that computing the size of a smallest branch-and-bound tree exactly is $${\#P} $$ # P -hard. Similar results hold for estimating the size of the tree produced by branching rules like most-infeasible branching. Finally, we discuss that finding small branch-and-bound trees generalizes finding short treelike resolution refutations, and thus non-automatizability results transfer from this setting.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3