Abstract
AbstractGiven an $$m\times n$$
m
×
n
binary matrix M with $$|M|=p\cdot mn$$
|
M
|
=
p
·
m
n
(where |M| denotes the number of 1 entries), define the discrepancy of M as $${{\,\textrm{disc}\,}}(M)=\displaystyle \max \nolimits _{X\subset [m], Y\subset [n]}\big ||M[X\times Y]|-p|X|\cdot |Y|\big |$$
disc
(
M
)
=
max
X
⊂
[
m
]
,
Y
⊂
[
n
]
|
|
M
[
X
×
Y
]
|
-
p
|
X
|
·
|
Y
|
|
. Using semidefinite programming and spectral techniques, we prove that if $${{\,\textrm{rank}\,}}(M)\le r$$
rank
(
M
)
≤
r
and $$p\le 1/2$$
p
≤
1
/
2
, then $$\begin{aligned}{{\,\textrm{disc}\,}}(M)\ge \Omega (mn)\cdot \min \left\{ p,\frac{p^{1/2}}{\sqrt{r}}\right\} .\end{aligned}$$
disc
(
M
)
≥
Ω
(
m
n
)
·
min
p
,
p
1
/
2
r
.
We use this result to obtain a modest improvement of Lovett’s best known upper bound on the log-rank conjecture. We prove that any $$m\times n$$
m
×
n
binary matrix M of rank at most r contains an $$(m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})})$$
(
m
·
2
-
O
(
r
)
)
×
(
n
·
2
-
O
(
r
)
)
sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank r is at most $$O(\sqrt{r})$$
O
(
r
)
.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Alon, N., Naor, A.: Approximating the cut-norm via Grothendieck’s inequality. SIAM J. Comput. 35(4), 787–803 (2006)
2. Erdős, P., Goldberg, M., Pach, J., Spencer, J.: Cutting a graph into two dissimilar halves. J. Graph Theory 12, 121–131 (1988)
3. Gavinsky, D., Lovett, S.: En route to the log-rank conjecture: New reductions and equivalent formulations. Electronic Colloquium on Computational Complexity (ECCC’13) (2013) 20, 80
4. Göös, M., Pitassi, T., Watson, T.: Deterministic communication versus partition number. SIAM J. Comput. 47(6), 2435–2450 (2018)
5. Grothendieck, A.: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. Sao Paulo 8, 1–79 (1953)