Improved convergence analysis of Lasserre’s measure-based upper bounds for polynomial minimization on compact sets

Author:

Slot Lucas,Laurent MoniqueORCID

Abstract

AbstractWe consider the problem of computing the minimum value $$f_{\min ,K}$$fmin,K of a polynomial f over a compact set $$K\subseteq {\mathbb {R}}^n$$KRn, which can be reformulated as finding a probability measure $$\nu $$ν on $$K$$K minimizing $$\int _Kf d\nu $$Kfdν. Lasserre showed that it suffices to consider such measures of the form $$\nu = q\mu $$ν=qμ, where q is a sum-of-squares polynomial and $$\mu $$μ is a given Borel measure supported on $$K$$K. By bounding the degree of q by 2r one gets a converging hierarchy of upper bounds $$f^{(r)}$$f(r)  for $$f_{\min ,K}$$fmin,K. When K is the hypercube $$[-1, 1]^n$$[-1,1]n, equipped with the Chebyshev measure, the parameters $$f^{(r)}$$f(r) are known to converge to $$f_{\min , K}$$fmin,K at a rate in $$O(1/r^2)$$O(1/r2). We extend this error estimate to a wider class of convex bodies, while also allowing for a broader class of reference measures, including the Lebesgue measure. Our analysis applies to simplices, balls and convex bodies that locally look like a ball. In addition, we show an error estimate in $$O(\log r / r)$$O(logr/r) when $$K$$K satisfies a minor geometrical condition, and in $$O(\log ^2 r / r^2)$$O(log2r/r2) when $$K$$K is a convex body, equipped with the Lebesgue measure. This improves upon the currently best known error estimates in $$O(1 / \sqrt{r})$$O(1/r) and $$O(1/r)$$O(1/r) for these two respective cases.

Funder

European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics,Software

Reference27 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3