Hierarchical reinforcement learning for efficient and effective automated penetration testing of large networks

Author:

Ghanem Mohamed C.,Chen Thomas M.,Nepomuceno Erivelton G.

Abstract

AbstractPenetration testing (PT) is a method for assessing and evaluating the security of digital assets by planning, generating, and executing possible attacks that aim to discover and exploit vulnerabilities. In large networks, penetration testing becomes repetitive, complex and resource consuming despite the use of automated tools. This paper investigates reinforcement learning (RL) to make penetration testing more intelligent, targeted, and efficient. The proposed approach called Intelligent Automated Penetration Testing Framework (IAPTF) utilizes model-based RL to automate sequential decision making. Penetration testing tasks are treated as a partially observed Markov decision process (POMDP) which is solved with an external POMDP-solver using different algorithms to identify the most efficient options. A major difficulty encountered was solving large POMDPs resulting from large networks. This was overcome by representing networks hierarchically as a group of clusters and treating each cluster separately. This approach is tested through simulations of networks of various sizes. The results show that IAPTF with hierarchical network modeling outperforms previous approaches as well as human performance in terms of time, number of tested vectors and accuracy, and the advantage increases with the network size. Another advantage of IAPTF is the ease of repetition for retesting similar networks, which is often encountered in real PT. The results suggest that IAPTF is a promising approach to offload work from and ultimately replace human pen testing.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture,Information Systems,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Raiju: Reinforcement learning-guided post-exploitation for automating security assessment of network systems;Computer Networks;2024-11

2. A deep reinforcement learning control method guided by RBF-ARX pseudo LQR;International Journal of Machine Learning and Cybernetics;2024-08-09

3. Advancing ESSecA: a step forward in Automated Penetration Testing;Proceedings of the 19th International Conference on Availability, Reliability and Security;2024-07-30

4. Reinforcement Learning Approaches in Cyber Security;Advances in Information Security, Privacy, and Ethics;2024-07-26

5. Artificial intelligence for system security assurance: A systematic literature review;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3