1. Aljanaki, A., Yang, Y.H., & Soleymani, M. (2017). Developing a benchmark for emotional analysis of music. PLoS ONE, 12(3).
2. Bachorik, J., Bangert, M., Loui, P., Larke, K., Berger, J., Rowe, R., & Schlaug, G. (2009). Emotion in motion: Investigating the time-course of emotional judgments of musical stimuli. Music Perception, 26, 355–364.
3. Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G., Salamon, J., Zapata, J., & Serra, X. (2013). ESSENTIA: An audio analysis library for music information retrieval. In Proceedings of the 14th international society for music information retrieval conference (pp. 493–498).
4. Choi, K., Fazekas, G., Sandler, M.B., & Cho, K. (2017). Transfer learning for music classification and regression tasks. In S.J. Cunningham, Z. Duan, X. Hu, & D. Turnbull (Eds.) Proceedings of the 18th international society for music information retrieval conference, ISMIR 2017, Suzhou, China, October 23-27, 2017 (pp. 141–149).
5. Chowdhury, S., Portabella, A.V., Haunschmid, V., & Widmer, G. (2019). Towards explainable music emotion recognition: The route via mid-level features. In Proceedings of the 20th international society for music information retrieval conference, ISMIR 2019, Delft, The Netherlands (pp. 237–243).